Global optimization by canonical dual function
نویسندگان
چکیده
منابع مشابه
Unified canonical duality methodology for global optimization
A unified methodology is presented for solving general global optimization problems. Based on the canonical dualitytriality theory, the nonconvex/nonsmooth/discrete problems from totally different systems are reformulated as a canonical min–max problem, which is equivalent to a monotone variational inequality problem over a convex cone. Therefore, a complementary-dual projection method is used ...
متن کاملCanonical Dual Transformation Method and Generalized Triality Theory in Nonsmooth Global Optimization
This paper presents, within a unified framework, a potentially powerful canonical dual transformation method and associated generalized duality theory in nonsmooth global optimization. It is shown that by the use of this method, many nonsmooth/nonconvex constrained primal problems in Rn can be reformulated into certain smooth/convex unconstrained dual problems in Rm with m 6 n and without duali...
متن کاملA Primal-Relaxed Dual Global Optimization Approach1
A deterministic global optimization approach is proposed for nonconvex constrained nonlinear programming problems. Partitioning of the variables, along with the introduction of transformation variables, if necessary, convert the original problem into primal and relaxed dual subproblems that provide valid upper and lower bounds respectively on the global optimum. Theoretical properties are prese...
متن کاملPower Function Distribution Characterized by Dual Generalized Order Statistics
The dual generalized order statistics is a unified model which contains the well known decreasingly ordered random data such as (reversed ordered) order statistics and lower record values. In the present paper, some characterization results on the power function distribution based on the properties of dual generalized order statistics are provided. The results are proved without any rest...
متن کاملCanonical Duality Theory: Connections between nonconvex mechanics and global optimization
This paper presents a comprehensive review and some new developments on canonical duality theory for nonconvex systems. Based on a tri-canonical form for quadratic minimization problems, an insightful relation between canonical dual transformations and nonlinear (or extended) Lagrange multiplier methods is presented. Connections between complementary variational principles in nonconvex mechanic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2010
ISSN: 0377-0427
DOI: 10.1016/j.cam.2009.12.045